Thursday, 02 April 2020

Mutation that causes anemia, also causes cancer

10 January 2013 | News | By BioSpectrum Bureau

Breakthrough in oncology research - Dr David Terman reveals that the mutation that causes sickle cell anemia also causes cancer

Breakthrough in oncology research - Dr David Terman reveals that the mutation that causes sickle cell anemia also causes cancer

Singapore: Research by Dr David S Terman of Jenomic Research Institute from Duke University, US, revealed that the genetic mutation that causes sickle cell anemia also turns red blood cells into potent tumor killers and this may offer a new way to treat cancers that are resistant to existing treatments.

The mutation that causes sickle cell anemia to change the shape of red blood cells also makes them sticky and prone to clump up. When there is little oxygen available in the environment (hypoxia), these sickle cells stick to blood vessel walls, clump together and block their blood supply. The sickle cells eventually rupture damaging the blood vessels and surrounding cells. In this new research, scientists have harnessed this phenomenon to target certain tumors.

Hypoxia is also naturally present in many solid tumors and causes resistance to chemotherapy and radiotherapy. Here, the researchers injected the sickle cells into mice with severely hypoxic tumors. The sickle cells stuck to and clumped up within the tumor blood vessels within minutes of injection, blocking tumor blood supply. As the sickle cells ruptured, the oxygen-releasing molecules they carried combined with a drug that blocked the degradation of such molecules, to kill a significant proportion of tumor cells and blood vessels. In contrast, normal red blood cells moved freely through the tumors without sticking or clumping and did not kill the tumors.

"Sickle cells, unlike normal red blood cells, stick like Velcro to hypoxic tumor blood vessels where they cluster and shut down the tumor blood supply. Once clumped within the tumor, the sickle cells rupture releasing toxic iron residues which promote tumor cell death" said Dr Terman, who is the head of molecular genetics at Jenomic.

The new approach differs from current treatment of such hypoxic solid tumors by targeting both the cancer cell and surrounding blood vessels suggesting that sickle cells may be "a potent new tool for treatment of hypoxic solid tumors."

Sign up for the editor pick and get articles like this delivered right to your inbox.

Editors Pick
+Country Code-Phone Number(xxx-xxxxxxx)


Comments

× Your session has been expired. Please click here to Sign-in or Sign-up
   New User? Create Account